Shape-directional growth of Pt and Pd nanoparticles.
نویسندگان
چکیده
The design and synthesis of shape-directed nanoscale noble metal particles have attracted much attention due to their enhanced catalytic properties and the opportunities to study fundamental aspects of nanoscale systems. As such, numerous methods have been developed to synthesize crystals with tunable shapes, sizes, and facets by adding foreign species that promote or restrict growth on specific sites. Many hypotheses regarding how and why certain species direct growth have been put forward, however there has been no consensus on a unifying mechanism of nanocrystal growth. Herein, we develop and demonstrate the capabilities of a mathematical growth model for predicting metal nanoparticle shapes by studying a well known procedure that employs AgNO3 to produce {111} faceted Pt nanocrystals. The insight gained about the role of auxiliary species is then utilized to predict the shape of Pd nanocrystals and to corroborate other shape-directing syntheses reported in literature. The fundamental understanding obtained herein by combining modeling with experimentation is a step toward computationally guided syntheses and, in principle, applicable to predictive design of the growth of crystalline solids at all length scales (nano to bulk).
منابع مشابه
A Pathway for the Growth of Core−Shell Pt−Pd Nanoparticles
The aging of both Pt−Pd nanoparticles and core− shell Pt−Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd−Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd−Pt particles remains uncertain. In our work on hydr...
متن کاملPdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities.
In this study, a new and convenient one step approach is described for synthesizing shape controlled PdPt bimetallic nanoparticles. It is found that the resultant morphologies of these PdPt nanoparticles can be well controlled by simply altering the participation of different halide ions that serve as shape controlling agents in the reaction solution. The dendritic core-shell PdPt bimetallic na...
متن کاملShape, Thermodynamics, Kinetics and Growth Mechanisms of Metal and Bimetallic Nanoparticles
Shape, Thermodynamics, Kinetics and Growth Mechanisms of Metal and Bimetallic Nanoparticles Lingxuan Peng Metal and bimetallic nanoparticles are of interest and are widely used in various applications because of their unique optical, electronic, and catalytic properties, which differ from those of their bulk counterparts. Better understanding of the thermodynamic and kinetic properties of nanop...
متن کاملSynthesis of octahedral Pt-Pd alloy nanoparticles for improved catalytic activity and stability in methanol electrooxidation.
We report Pt-Pd nanoparticles synthesized by means of a polyol process with glycerol as a reducing agent. The Pt-Pd nanoparticles exhibit dominantly exposed {111} facets in octahedral shape with complete alloy formation between Pt and Pd. Furthermore, the octahedral Pt-Pd alloy catalysts show improved catalytic activity and stability in methanol electrooxidation.
متن کاملGreen Synthesis, Characterization and Uses of Palladium/Platinum Nanoparticles
Biogenic synthesis of palladium (Pd) and platinum (Pt) nanoparticles from plants and microbes has captured the attention of many researchers because it is economical, sustainable and eco-friendly. Plant and their parts are known to have various kinds of primary and secondary metabolites which reduce the metal salts to metal nanoparticles. Shape, size and stability of Pd and Pt nanoparticles are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 6 19 شماره
صفحات -
تاریخ انتشار 2014